Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

УТВЕРЖДЕНО решением Ученого совета ИФФВТ от 16 июня 2020 г. протокол № 11/02-19-10

Председатель

(подпись, расшифровка подписи

РАБОЧАЯ ПРОГРАММА

Дисциплина	<u>КВАНТОВАЯ ЭЛЕКТРОНИКА</u>
Факультет	Инженерно-физический факультет высоких технологий
Кафедра	Радиофизики и электроники (РФЭ)
Курс	4

Направление <u>03.03.03 «Радиофизика» (бакалавриат)</u>

(код направления, полное наименование)

Направленность (профиль) <u>Твердотельная электроника и наноэлект</u>	роника		
полное наименование			
Форма обучения: очная			
Дата введения в учебный процесс УлГУ: «01»сентября	_2020 г.		
Программа актуализирована на заседании кафедры: протокол №	от	20	_Γ.
Программа актуализирована на заседании кафедры: протокол №	ОТ	20	_Γ.
Программа актуализирована на заседании кафедры: протокол №	ОТ	20	_Γ.

Сведения о разработчиках:

ФИО	Аббревиатура	Должность,
Ψησ	кафедры	ученая степень, звание
Санников Дмитрий Германович	ников Дмитрий Германович РФЭ Профессор, д.фм.	

СОГЛАСОВАНО	СОГЛАСОВАНО
Заведующий кафедрой РФЭ,	Заведующий выпускающей кафедрой РФЭ
реализующей дисциплину	

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

<u> Цель освоения дисциплины</u> — изучение физических основ квантовой электроники, т.е. принципов усиления и генерации света на основе индуцированного испускания излучения в термодинамически неравновесных квантовых системах.

Задача преподавания дисциплины:

• сформировать у студента современное представление об усилении и генерации когерентного электромагнитного излучения в квантовых приборах (лазерах и мазерах), а также принципах их устройства и работы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП

Дисциплина «Квантовая электроника» относится базовым дисциплинам профессионального цикла основной образовательной программы по направлению 03.03.03 – «Радиофизика».

Дисциплина базируется на следующих дисциплинах образовательной программы бакалавра по направлению «Радиофизика»: модули «Математика» и «Общая физика» базовой части цикла математических и естественнонаучных дисциплин.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В результате освоения дисциплины «Квантовая электроника» формируются следующие компетенции:

- способность к овладению базовыми знаниями в области математики и естественных наук, их использованию в профессиональной деятельности (ОПК-1);
- способность самостоятельно приобретать новые знания, используя современные образовательные и информационные технологии (ОПК-2)
- способность понимать принципы работы и методы эксплуатации современной радиоэлектронной и оптической аппаратуры и оборудования (ПК-1);
- способность использовать основные методы радиофизических измерений (ПК-2);
- владение компьютером на уровне опытного пользователя, применению информационных технологий (ПК-3);

В результате изучения дисциплины студенты должны иметь представление:

- ✓ о видах квантовых переходов и коэффициентах Эйнштейна;
- ✓ о режимах усиления и генерации в квантовых системах;
- ✓ об устройстве и физических принципах работы лазеров и мазеров; *знать*:
- ✓ основные механизмы уширения спектральных линий;
- ✓ методы создания инверсной населенности в среде;
- ✓ условия инверсии, насыщения, самовозбуждения; *уметь*:
- ✓ находить решения и делать численные оценки инверсии населенностей и коэффициента усиления (поглощения) в лазерных средах;
- ✓ делать числовые оценки добротности различных резонаторов;
- ✓ производить численные оценки порога самовозбуждения, мощности колебаний, частоты генерации для квантовых усилителей и генераторов.

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

Код и наименование	Перечень планируемых результатов обучения по дисциплине (модулю),
реализуемой компетенции	соотнесенных с индикаторами достижения компетенций
способность к овладению	✓ Знать: основные научные направления квантовой электроники и
базовыми знаниями в	их содержание
области математики и	Уметь: проводить научные исследования в учебных
естественных наук, их	лабораториях
использованию в	 ✓ Владеть: навыками работы с литературой по предмету
профессиональной	
деятельности (ОПК-1)	
способность	✓ Знать: возможности современных компьютерных средств
самостоятельно	(Maple, MathCad, MatLab и т.п.)
приобретать новые знания,	√ Уметь: решать задачи с использованием современных
используя современные	компьютерных средств
образовательные и	 ✓ Владеть: терминологией изучаемого предмета
информационные	
технологии (ОПК-2)	
способность понимать	 ✓ Знать: принципы работы лазеров и мазеров
принципы работы и	Уметь: работать с современным измерительным
методы эксплуатации	оборудованием
современной	 ✓ Владеть: навыками эксплуатации квантовых приборов
радиоэлектронной и	
оптической аппаратуры и	
оборудования (ПК-1)	
способность использовать	 ✓ Знать: теорию погрешностей
основные методы	 Уметь: применять статистическую обработку результатов
радиофизических	измерений
измерений (ПК-2)	✓ Владеть: навыками компьютерной обработки результатов
	измерений
владение компьютером на	✓ Знать: терминологию современных IT-технологий
уровне опытного	✓ Уметь: выполнять моделирование работы элементов лазерных
пользователя,	схем
применению	✓ Владеть: навыками использования программных
информационных	математических пакетов
технологий (ПК-3)	

1. ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ

4.1. Объем дисциплины в зачетных единицах (всего) 2 ЗЕ

4.2. Объем дисциплины по видам учебной работы (в часах) - 72

Виды учебной работы	Всего часов	Семестры
Общая трудоемкость дисциплины	72/72	7
Аудиторные занятия	36/36	36/36
Лекции	18/18	18
Лабораторные работы		
Практические занятия (ПЗ)	18/18	18
Самостоятельная работа	36	36
Вид итогового контроля (зачет, экзамен)	(зачет)	(зачет)

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

	Количество часов (форма обучения - очная)		
Вид учебной работы	Разго на плану	В т.ч. по семестрам	
	Всего по плану	7	
Аудиторные занятия:	36/36	36/36	
Лекции	18/18	18	
Практические (семинарские) занятия	18/18	18	
Лабораторные работы			
Самостоятельная работа	36/36	36	
Форма текущего контроля знаний и	тестирование,	тестирование,	
контроля самостоятельной работы:	устный опрос	устный опрос	
тестирование, контр. работа,	решение задач	решение задач	
коллоквиум, реферат и др. (не менее			
2 видов)			
Виды промежуточного контроля	Зачет	зачет	
Всего часов по дисциплине	72	72	

^{*} В случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий в таблице через слеш указывается количество часов работы ППС с обучающимися для проведения занятий в дистанционном формате с применением электронного обучения

4.3. Содержание дисциплины (модуля). Распределение часов по темам и видам учебной работы:

Форма обучения: очная

		Виды учебных занятий		
Подрение и реалилор и тем	Всего	Аудиторные занятия		Самостояте
Название и разделов и тем		лекции	семинар	льная работа
1.Введение	8	2	2	4
2.Ширина линии	8	2	2	4
3. Усиление в активных средах	8	2	2	4
4. Двухуровневая система во внешнем электромагнитном поле (квантовомеханический подход)	8	2	2	4
5. Лазеры-усилители	8	2	2	4
6.Принципы генерации	8	2	2	4
7.Открытые резонаторы	8	2	2	4
8. Гауссовы пучки, устойчивость резонаторов	8	2	2	4
9. Синхронизация мод и модуляция добротности.	8	2	2	4
Итого	72	18	18	36

5. Содержание курса

1. Введение. Определение квантовой электроники. Когерентность индуцированного излучения. Соотношение неопределенностей энергия – время, естественное время жизни. Время релаксации. Ширина спектра спонтанного излучения.

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

- 2. Однородное и неоднородное уширения. Гауссова форма линии при доплеровском уширении.
- 3. Активная среда. Скоростные уравнения. Эффект насыщения.
- **4.** Квантовое описание 2-х уравнений системы. Волновые функции стационарных состояний. Уравнение Шредингера при наличии возмущений, частота Раби.
- 5. Полоса пропускания усилителя бегущей волны. Шум квантового усилителя.
- 6. Условия генерации лазерного излучения.
- 7. Открытый резонатор, его добротность. Условия баланса амплитуд фаз при резонансе. Частота генерации.
- **8.** Гауссовы пучки. Конфокальный резонатор. Устойчивость и неустойчивость открытых резонаторов.
- 9. Синхронизация мод. Модуляция добротности.

6. ТЕМЫ ПРАКТИЧЕСКИХ И СЕМИНАРСКИХ ЗАНЯТИЙ

- **Тема 1.** Основные понятия квантовой электроники. Индуцированные и спонтанные переходы, коэффициенты Эйнштейна. Вывод формулы Планка.
- **Тема 2.** Лоренцева и гауссова формы линии. Вероятность индуцированных переходов при монохроматическом излучении. Решение задач.
- Тема 3. Поглощение и усиление. Эффект насыщения. Решение задач.
- **Тема 4.** Квантовое описание 2-хуровневой системы. Доказательство ортономированности волновых функций. Решение задач.
- Тема 5. Лазерные усилители. Решение задач.
- Тема 6. Генерация в непрерывном и импульсном режимах. Решение задач.
- Тема 7. Резонаторы. Решение задач.
- Тема 8. Гауссовы пучки. Устойчивость и неустойчивость открытых резонаторов. Решение задач.
- Тема 9. Синхронизация мод. Модуляция добротности. Решение задач.

7. ЛАБОРАТОРНЫЕ РАБОТЫ (ЛАБОРАТОРНЫЙ ПРАКТИКУМ)

Лабораторные работы не предусмотрены учебным планом.

8. ТЕМАТИКА КУРСОВЫХ, КОНТРОЛЬНЫХ РАБОТ, РЕФЕРАТОВ

Курсовые и контрольные работы, рефераты не предусмотрены учебным планом.

9. ПЕРЕЧЕНЬ ВОПРОСОВ К ЗАЧЕТУ

- 1. Определение квантовой электроники. Краткая характеристика шкалы длин волн (УФ, видимые, ИК, СВЧ, радиоволны) и их использование.
- 2. Соотношение неопределенностей Гейзенберга.
- 3. Коэффициенты Эйнштейна. Когерентность индуцированного излучения.
- 4. Естественное время жизни, ширина спектра спонтанного излучения.
- 5. Однородное и неоднородное уширения. Лоренцева форма линии. Гауссова форма линии при доплеровском уширении.
- 6. Поглощение и усиление света (записать и объяснить условие для населенностей уровней).
- 7. Активная среда (определение, примеры).
- 8. Сечение поглощения. Эффект насыщения.
- 9. Плотность потока энергии насыщающего излучения. Энергия насыщения.

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

- 10. Непрерывный импульсный режимы генерации (определение, примеры лазеров).
- 11. Волновые функции стационарных состояний.
- 12. Уравнение Шредингера при наличии возмущений. Первое приближение теории возмущений.
- 13. Суперпозиция волновых функций стационарных состояний. Матричный элемент оператора дипольного момента перехода.
- 14. Осцилляции населенности верхнего уровня. Частота Раби.
- 15. Усиление и генерация. Полоса пропускания усилителя бегущей волны.
- 16. Шум квантового усилителя. Максимальная выходная мощность.
- 17. Импульсный режим, максимальная выходная энергия, изменение формы импульса при нелинейном усилении.
- 18. Открытый резонатор, его добротность. Регенерация резонатора при усилении.
- 19. Проходной резонаторный усилитель. Отражательный усилитель.
- 20. Условия самовозбуждения. Условия резонанса.
- 21. Частота генерации. Максимальная выходная мощность.
- 22. Типы резонаторов в электронике. Переход к коротким волнам.
- 23. Падение добротности и сгущение резонансов замкнутых объемов.
- 24. Открытые резонаторы, прореживание спектра. Число Френеля.
- 25. Понятие моды резонатора. Время жизни моды пассивного резонатора.
- 26. Анализ Фокса-Ли. Интегральное уравнение открытого резонатора.
- 27. Гауссовы пучки. Конфокальный резонатор.
- 28. Устойчивость резонаторов.
- 29. Неустойчивость резонаторов. Модовый состав лазерного излучения.
- 30. Генерация в нескольких продольных модах, нерегулярность спектра излучения.
- 31. Затягивание мод. Синхронизация мод (пассивная и активная).
- 32. Модуляция добротности.
- 33. Затягивание частоты. Провал Лэмба.

10. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

Содержание, требования, условия и порядок организации самостоятельной работы обучающихся с учетом формы обучения определяются в соответствии с «Положением об организации самостоятельной работы обучающихся», утвержденным Ученым советом УлГУ (протокол №8/268 от 26.03.2019 г.).

Название разделов и тем	Вид самостоятельной работы	Объем в	Форма
		часах	контроля
1. Введение. История квантовой	Проработка учебного материала	4	Устный опрос,
электроники. Коэффициенты			тест
Эйнштейна.			
2. Ширина линии излучения	Проработка учебного материала	4	Устный опрос,
(поглощения)			тест
3. Усиление в активных средах.	Проработка учебного материала	4	Устный опрос,
Эффект насыщения.			тест
4. Квантово-механический	Проработка учебного материала	4	Устный опрос,
подход для описания 2-			тест
хуровневой системы.			
5. Характеристики лазерных	Проработка учебного материала	4	Устный опрос,
усилителей.			тест
6. Генерация лазерного	Проработка учебного материала	4	Устный опрос,

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

излучения.					тест
7. Открытые	резонаторы	В	Проработка учебного материала	4	Устный опрос,
квантовой элек	тронике.				тест
8. Гауссовы	пучки	В	Проработка учебного материала	4	Устный опрос,
резонаторах.	Устойчивые	И			тест
неустойчивые р	оезонаторы.				
9. Синхрониза	ция м	юд.	Проработка учебного материала	4	Устный опрос,
Модуляция доб	ротности.				тест

10. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

а) Список рекомендуемой литературы

основная:

- 1. Карлов Н.В. Лекции по квантовой электронике : учеб. пособие для вузов / Карлов Николай Васильевич. 2-е изд., испр., доп. Москва : Наука, 1988.
- 2. Ахманов, С. А. Физическая оптика : учебник / С. А. Ахманов, С. Ю. Никитин. Москва : Московский государственный университет имени М.В. Ломоносова, 2004. 656 с. ISBN 5-211-04858-X. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/13050.html.

дополнительная:

- 1. Киселев Г. Л. Квантовая и оптическая электроника : учеб. пособие / Киселев Геннадий Леонидович. 2-е изд., испр. и доп. Санкт-Петербург : Лань, 2011.
- 2. Иванов, И. Г. Основы квантовой электроники : учебное пособие / И. Г. Иванов. Ростовна-Дону : Издательство Южного федерального университета, 2011. 174 с. ISBN 978-5-9275-0873-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/47052.html.

учебно-методическая:

- 1. Санников Д. Г. Методические указания для самостоятельной работы по дисциплине «Квантовая электроника» для студентов бакалавриата по направлению 03.03.03 «Радиофизика» очной формы обучения / Д. Г. Санников; УлГУ, ИФФВТ, Каф. радиофизики и электроники. Ульяновск : УлГУ, 2019. Режим доступа: http://lib.ulsu.ru/MegaPro/Download/MObject/6679.
- 2. Гераскин А. П. Квантовая радиофизика : спец. лабораторный практикум по курсу "Квантовая радиофизика" / А. П. Гераскин, Д. Г. Санников. Ульяновск : УлГУ, 2006. Режим доступа: http://lib.ulsu.ru/MegaPro/Download/MObject/655.

Согласовано:			
И. Умериотеми 6001 / Полжность сотрудника научной библиотеки	Tomello d. 7	1 dy	
Должность сотрудника научной библиотеки	ФИО	подпись	дата

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

б) Программное обеспечение

Лицензионные математические пакеты: Maple, MathLab

в) Профессиональные базы данных, информационно-справочные системы

1. Электронно-библиотечные системы:

- 1.1. IPRbooks : электронно-библиотечная система : сайт / группа компаний Ай Пи Ар Медиа. Саратов, [2020]. URL: http://www.iprbookshop.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.2. ЮРАЙТ : электронно-библиотечная система : сайт / ООО Электронное издательство ЮРАЙТ. Москва, [2020]. URL: https://www.biblio-online.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.3. Консультант студента : электронно-библиотечная система : сайт / ООО Политехресурс. Москва, [2020]. URL: http://www.studentlibrary.ru/catalogue/switch_kit/x2019-128.html. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.4. Лань : электронно-библиотечная система : сайт / ООО ЭБС Лань. Санкт-Петербург, [2020]. URL: https://e.lanbook.com. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.5. Znanium.com : электронно-библиотечная система : сайт / ООО Знаниум. Москва, [2020]. URL: http://znanium.com. Режим доступа : для зарегистрир. пользователей. Текст : электронный.
- 1.6. Clinical Collection : коллекция для медицинских университетов, клиник, медицинских библиотек // EBSCOhost : [портал]. URL: http://web.a.ebscohost.com/ehost/search/advanced?vid=1&sid=e3ddfb99-a1a7-46dd-a6eb-2185f3e0876a%40sessionmgr4008. Режим доступа : для авториз. пользователей. Текст : электронный.
- **2. КонсультантПлюс** [Электронный ресурс]: справочная правовая система. /ООО «Консультант Плюс» Электрон. дан. Москва : КонсультантПлюс, [2020].

3. Базы данных периодических изданий:

- 3.1. База данных периодических изданий : электронные журналы / ООО ИВИС. Москва, [2020]. URL: https://dlib.eastview.com/browse/udb/12. Режим доступа : для авториз. пользователей. Текст : электронный.
- 3.2. eLIBRARY.RU: научная электронная библиотека : сайт / ООО Научная Электронная Библиотека. Москва, [2020]. URL: http://elibrary.ru. Режим доступа : для авториз. пользователей. Текст : электронный
- 3.3. «Grebennikon» : электронная библиотека / ИД Гребенников. Москва, [2020]. URL: https://id2.action-media.ru/Personal/Products. Режим доступа : для авториз. пользователей. Текст : электронный.
- **4. Национальная электронная библиотека** : электронная библиотека : федеральная государственная информационная система : сайт / Министерство культуры РФ ; РГБ. Москва, [2020]. URL: https://нэб.рф. Режим доступа : для пользователей научной библиотеки. Текст : электронный.
- **5.** <u>SMART Imagebase</u> // EBSCOhost : [портал]. URL: https://ebsco.smartimagebase.com/?TOKEN=EBSCO-1a2ff8c55aa76d8229047223a7d6dc9c&custid=s6895741. Режим доступа : для авториз. пользователей. Изображение : электронные.

6. Федеральные информационно-образовательные порталы:

6.1. <u>Единое окно доступа к образовательным ресурсам</u> : федеральный портал / учредитель ФГАОУ ДПО ЦРГОП и ИТ. – URL: http://window.edu.ru/. – Текст : электронный.

Министерство науки и высшего образования Российской Федерации Ульяновский государственный университет	Форма	
Ф- Рабочая программа дисциплины		

6.2. <u>Российское образование</u> : федеральный портал / учредитель ФГАОУ ДПО ЦРГОП и ИТ. – URL: http://www.edu.ru. – Текст : электронный.

7. Образовательные ресурсы УлГУ:

- 7.1. Электронная библиотека УлГУ : модуль АБИС Мега-ПРО / ООО «Дата Экспресс». URL: http://lib.ulsu.ru/MegaPro/Web. Режим доступа : для пользователей научной библиотеки. Текст : электронный.
- 7.2. Образовательный портал УлГУ. URL: http://edu.ulsu.ru. Режим доступа : для зарегистр. пользователей. Текст : электронный.

Согласовано:	1 Topogy ruska well	Tepa	
Должность сотрудника УИТиТ	ОФИО	поднись	дата

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудитории кафедры, укомплектованные необходимым специализированным оборудованием для проведения занятий, текущего контроля и промежуточной аттестации, групповых и индивидуальных консультаций.

12. СПЕЦИАЛЬНЫЕ УСЛОВИЯ ДЛЯ ОБУЧАЮЩИХСЯ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

В случае необходимости, обучающимся из числа лиц с ограниченными возможностями здоровья (по заявлению обучающегося) могут предлагаться одни из следующих вариантов восприятия информации с учетом их индивидуальных психофизических особенностей:

- для лиц с нарушениями зрения: в печатной форме увеличенным шрифтом; в форме электронного документа; в форме аудиофайла (перевод учебных материалов в аудиоформат); в печатной форме на языке Брайля; индивидуальные консультации с привлечением тифлосурдопереводчика; индивидуальные задания и консультации;
- для лиц с нарушениями слуха: в печатной форме; в форме электронного документа; видеоматериалы с субтитрами; индивидуальные консультации с привлечением сурдопереводчика; индивидуальные задания и консультации:
- для лиц с нарушениями опорно-двигательного аппарата: в печатной форме; в форме электронного документа; в форме аудиофайла; индивидуальные задания и консультации.

В случае необходимости использования в учебном процессе частично/исключительно дистанционных образовательных технологий, организация работы ППС с обучающимися с ОВЗ и инвалидами предусматривается в электронной информационно-образовательной среде с учетом их индивидуальных психофизических особенностей.

Разработчик

д.ф.-м.н., профессор кафедры РФЭ, Санников Д.Г.

ность ФИО